
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    1989 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Implementation of Neural Model Predictive 
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Abstract—This paper analyses the usage of Discrete-time Linear Model Predictive Control in controlling a Continuous Stirred Tank Reactor 
System based on neural network. Two different schemes of Model Predictive control are present. To begin with, a basic Model Predictive Control 
based on Generalized Predictive Control is used and then a Model Predictive Control approach based on neural network. Simulation results have 
been included which demonstrate the performance of both controllers when used to control Single-Input Single-Output Continuous Stirred Tank 
Reactor System and the performance when Neural Network based Model Predictive Control is applied. In order to obtain a more accurate process 
description the neural model is trained with data from simulation of a phenomenological model and afterwards, is employed with actual plant data. 
Here, this strategy permits to carry out the training without to introduce disturbance in the real plant. Artificial Neural networks of different sizes are 
trained. The performance of a model predictive control based on the neural model is evaluated for disturbance rejection. The achieved results allow 
us to conclude that the developed neural model predictive control is adequate to control effectively. 
 

Index Terms—Artificial Neural Network(ANN), Continuous stirred tank system(CSTR), Model Predictive Control(MPC), Plant, Simulation, 

States of process, weight vector. 

——————————      ——————————

1   INTRODUCTION 
rom the last few decades, An Artificial Neural 
Networks (ANN) have brought the valuable tools 
for modelling, identification and control of non 

linear systems. It have been implemented in control 
system developments for a wide variety of non-linear 
complex systems, mainly when a physical model, that 
represents adequately the real behaviour of the process, 
is not available. ANN shows very important advantages 
regarding other technologies when they are applied to 
nonlinear systems. This carry out a parallel and 
distributed processing of the information and are having 
the ability not to affected or harmed by the faults. 
Control systems that use ANN can be easily 
implemented, can operate simultaneously with 
qualitative and quantitative data, may be applied to 
systems with several inputs and outputs and are 
arbitrarily able to approximate non-linear functions[1]. 
From the starting  of ninety’s the ANN have been 
implemented in control area. Such characteristics allow it 
to design a simple network structure, in order to avoid 
extensive and unnecessary computations and facilitate  
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the application on real time control. 
            In recent years, the requirements for the  
 quality of automatic control in the process industries 
increased significantly due to the increased complexity 
of the plants and sharper specifications of product 
quality. At the same time, the available computation 
power increased to a very high level. As a result, 
computer models that are becoming computationally 
expensive became applicable even to rather complex 
problems. Model-based control techniques were 
developed to obtain better control. Model predictive 
control was introduced successfully in several industrial 
plants. A good advantage of such control schemes is the 
ability to handle constraints of actuated variables  and  
internal  variables. In most applications of model 
predictive techniques, a linear model is used to forecast 
the process behaviour over the horizon of interest [2],[3]. 
            As most real processes show a nonlinear 
behaviour, some work was done to extend predictive 
control techniques to incorporate nonlinear models 
[4],[5],[6]. The most expensive part of the realization of a 
nonlinear predictive control scheme is the derivation of 
the mathematical model. In various cases it is not 
possible to obtain a suitable physically founded process 
model due to the complexity of the underlying processes 
or the lack of knowledge of critical parameters  (as, e.g., 
temperature- and pressure-dependent mass transfer 
coefficients or viscosities) of the models. A promising 
way to overcome these problems is to use neural 
networks as nonlinear black-box models of the dynamic 
behaviour of the process [7],[8],[9]. Such neural network 
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models may be derived from measured input output 
data of the plant. In many practical cases, however, 
conventional controllers (P/PI/PID-controllers) are 
already in use at the plant which stabilize the plant and 
provide some basic, sometimes sluggish control. As we 
demonstrate, measurements of input output variables of 
the plant operated with the linear controller may provide 
very good training data for the neural network. The 
approach is more practical (here plant is always under 
automatic control) and more effective than using 
experiments without control (open-loop). Model 
Predictive Control (MPC) has made a significant impact 
on modern control engineering. It has found a wide 
range of applications in the process, chemical and food 
processing industries. 
            Model Predictive Control refers to a specific 
procedure in controller design from which many kinds 
of algorithms can be developed for different systems, it 
may linear or nonlinear, discrete or continuous. The 
main difference in the various methods of MPC is 
mainly the way the control problem is formulated. One 
of the most popular methods of MPC is Generalized 
Predictive Control (GPC). GPC was developed by Clarke 
[10]. The idea of GPC is to calculate future control 
signals in such a way that it minimizes a cost function 
defined over a prediction horizon. GPC is capable of 
controlling processes with variable dead-time, unstable 
and non-minimum phase systems. In this work, 
Discrete-time Model Predictive Control (DMPC) is used 
to control the concentration of a nonlinear Continuous 
Stirred Tank Reactor (CSTR) System in MATLAB, 
Simulink environment. At first, Model Predictive 
Control based on Generalized Predictive Control [11] 
which is a restricted model approach, is employed. Then 
a different approach using neural network is used. 
Artificial Neural Network (ANN) when used with 
DMPC[4] have many benefits such as, the number of 
terms used in the optimization problem can be reduced 
to a fraction of that required by the basic procedure, 
allows substantial improvements in feasibility [7], two 
explicit tuning parameters can be used for tuning the 
closed loop performance with ease and For Multi-Input 
and Multi-Output (MIMO) configuration both of these 
tuning parameters can be selected independently for 
each input. Finally, simulation results are given to 
demonstrate the performance achieved when both 
approaches are applied to Single-Input and Single-
Output (SISO) nonlinear CSTR System. Also, the DMPC 
using Neural Network approach can be  applied to 
MIMO nonlinear CSTR System. 
 
2  Model Predictive control 
Model Predictive Control(MPC), is advanced method 
of process control that has been in use in 
the process industries such as chemical plants and oil 
refineries since the 1980. Model predictive controllers 

based on dynamic models of the process, most often 
models are obtained by  system identification. The 
models used in Model Predictive Control are generally 
intended to represent the behaviour of 
complex dynamical systems. The additional difficulty of 
the Model Predictive Control algorithm is not generally 
needed to provide adequate control of less complex 
systems, which are generally controlled well by PID 
controllers. General dynamic characteristics that are 
complex for PID controllers include large time delays 
and high-order dynamics. MPC models predict the 
change in the dependent variables of the modelled 
system that will be caused by changes in 
the independent variables. Often in a chemical process, 
independent variables that can be adjusted by the 
controller are often either the set points of regulatory 
PID controllers (pressure, flow, temperature, etc.)  or the 
final control element (valves, dampers, etc.). MPC uses 
the current plant measurements,  the current varying 
state of  process, the Model Predictive Control models, 
and the process variable targets and limits to calculate 
future changes in the dependent variables. Such changes 
are calculated to hold the dependent variables close to 
target while honoring constraints on both independent 
and dependent variables.  

Prediction Control 
Calculation

Set Point 
Calculations

Process

Model 
Output

Residual (error)

Predicted 
Output

Inputs

+

-

Process 
Output

Model

Fig. 1. Block Diagram of Model Predictive Control 

The Model Predictive Control typically sends out only 
the prime change in each independent variable to be 
applied, and repeats the calculation when the next 
variation is required. While many real processes are not 
linear, often, they can  be considered to be approximately 
linear over a small operating range. When linear models 
are not sufficiently accurate to represent the real process 
non linearities, several approaches may be used. The 
nonlinear model can be in the form of an empirical data 
fit (e.g. artificial neural networks) or a high-fidelity 
dynamic model based on fundamental mass and energy 
balance system. The nonlinear model can be linearized to 
derive a Kalman filter or specify a model for linear MPC. 
MPC is based on iterative, finite horizon optimization of 
the plant model. At time t, the current plant state can be 
sampled and a cost minimizing control strategy is 
computed (via a numerical minimization algorithm  for  a 
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relatively short time horizon in the future:[ , ]t t T+ . 
Specifically, the online calculation is used to explore state 
trajectories that emanate from the current state and find 
(via the solution of Euler-Lagrange equations) a cost-
minimizing control strategy until time [ ]t T+ .Only the 
first step of the control strategy is implemented and then 
the current(plant) state is sampled again and the 
calculations are repeated starting from the now current 
state, obtaining a new control and new predicted state 
path, and prediction horizon continuously keeps being 
shifted forward and for this reason MPC is also called 
 receding horizon control[12]. MPC is a multivariable 
control algorithm which uses: 

1. an  internal dynamic model of the process                                 
2.a history of past control moves and                                          
3.an optimization cost function J over the receding 
prediction     horizon, 

To calculate the optimum control moves.  The 
optimization cost function for MPC is given by: 

2 2

1 1

( )
x ii

N N

i i u i
i i

J w r x w u
= =

= − +∑ ∑                                          (1) 

i
x = i -th controlled variable (e.g. measured temperature) 

i
r = i -th reference variable (e.g. required temperature) 

i
u = i -th manipulated variable (e.g. control valve) 

weighting coefficient reflecting the relative importance of 
xi iw x=

weighting coefficient penalizing relative big changes in   
i

u i
w u=

Nonlinear Model Predictive Control, is a variant of 
model predictive control (MPC) that is characterized by 
the use of nonlinear system models in the prediction[13]. 
Similar to linear MPC, NMPC requires the iterative 
solution of optimal control problems on a finite 
prediction horizon. Although, such problems are convex 
in linear Model Predictive Control, in nonlinear Model 
Predictive Control these are not convex further. This 
brings challenges for both, Nonlinear Model Predictive 
Control stability theory and numerical solution. The 
numerical solution of the NMPC optimal control 
problems is typically based on direct optimal control 
methods using Newton-type optimization schemes, here, 
in one of the variants: direct single shooting, direct and 
multiple shooting methods, or direct collocation. 
            Nonlinear Model Predictive Control algorithms 
typically exploit the fact that consecutive optimal control 
problems are similar to each. This permits to initialize 
the Newton-type solution procedure efficiently by a 
suitably shifted guess from the previously computed 
optimal solution, saving a lot of amount of computation 
time. Nonlinear Model Predictive Control is 
continuously applied to more and more applications 
with high sampling rates, e.g., in the automotive 

industry etc,  even when the states of the process are 
distributed in space (Distributed parameter systems)[14].             
Objectives of the Model Predictive Control: 
1. Present violations of input and output constraints. 
2. Drive some output variables to their optimal set points 
, while maintaining other outputs within specified range. 
3. Prevent excessive change of input variables. 
4. Control as many process variables , when a sensor / 
actuator is not available. 
            In equally constraints on input and output 
variables, i.e. upper and lower limits ,can be included in 
both calculations –SP calculation , control calculations . 
This is a unique feature of MPC , and suitable for MIMO 
control problems. Optimizing function objective may 
include: 
1.Maximising a profit function 
2. Minimizing a cost function 
3.Maximising production rate. 
            Optimum values of SP are changed due to varying 
process   constraint changes: 
1.Variation in process condition 
2.Equipment                                                                    
3.Instrumentation                                                           
4.Economic data prices and optimal cost. 
In MPC , SPs are calculated each time with control 
calculation: Determine a sequence of control moves  
(manipulated value), such that the predicted response is 
close to the SP in an optimal manner.  Control 
calculations are based on optimizing an objective 
function, based on a set of P predicted outputs. 
Determines M values of input 

^

(k 1),            i 1, 2, .........., Py + =  

 
And, (k i 1),           i=1,2,............Mu + −  
Input is held constant after M moves , control horizon 
whereas P is prediction horizon. In  Reducing Horizon 
approach, Although a sequence of M control moves is 
calculated at each sampling instant, after new  

 
Fig. 2. Discrete Model Predictive Control scheme 

 
 

measurement become available, only the first input move 
is implemented and this procedure is repeated at each 
sampling instant. 
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2.1  Predictions For SISO Models 
In industrial applications of MPC, it has been a practice 
to have discrete –time, linear ,empirical models i.e. 
difference equation form or step response model.  Step 
response models  represent stable processes with 
unusual dynamic behaviour , which may not be 
described by simple T.F. model. But they may require 
large member of model parameters.  Let step response 
model for a SISO process: 

1

0
1

(k 1) (k i 1) (k N 1)
N

i N
i

y y S u S u
−

=

+ = + − + + − +∑                (2) 

(k i 1)u − + = change in manipulated output over the 
instant 
= (k i 1) (k i)u u− + − −  
Where, y and u are deviation variables. Model 
parameters are 

1 0
 to ;  30 120 and (0) (may be zero)

N
S S N y y≤ ≤ =  
if k is current sampling instant. 

1^

1

(k 1) (k i 1) (k N 1)
N

i N
i

y S u S u
−

=

+ = − + + − +∑                        (3) 

1

1
2

(k) (k i 1) (k N 1)
N

i N
i

S u S u S u
−

=

= + − + + − +∑                    (4) 

effect of current
control action

                  effect of past 
control action

 

I term shows effect of current input because: 
(k) (k) (k 1)u u u= − −  

II term shows the effect of past input, u(i) , i < k 
for 2 -step ahead prediction: 
k=k’+1 and 

^ 1
' ' '

1

(k 1) (k i 2) (k N 2)
N

i N
i

S S uy
−

=

+ = − + + − +∑                    (5) 

valid for all positive k’ 
without loss of generality , we replace k by k and expand 
RHS: 

^ 1
'

1 2
3

(k 2) (k 1) (k) (k 2)

                                     (k 2)

N

i
i

N

S u S u S u i

S u N

y
−

=

+ = + + + − +

+ − +

∑  
     (6) 

on RHS : I term - effect future control action 
II term - effect current control action 
III & IV terms - effect past control action. 
An analogous derivation , by extension , provides an 
expression for j -step ahead prediction , j being arbitrary 
positive integer 

^ 1

1 1

(k ) (k 1) (k 1)

                                     (k )

j N

i i
i i j

N

j S u j S u j

S u j N

y
−

= = +

+ = + − + + −

+ + −

∑ ∑ 
(7)

effect of current and 
future control action

          effect of past control actions
or predicted unforced response  

^
1

1

0 (k ) (k 1) (k )
N

i N
i j

j S u j S u j Ny
−

= +

+ = + − + + −∑              (8) 

And, 
^^

1

0(k ) (k 1) (k )
j

i
i

j S u j jy y
=

+ = + − + +∑                (9) 

2.2 Extension Of MPC Calculation S, Based On 
Multiple Predictions: 
Assume 

^ ^ ^^
T(k 1) [ (k 1)   (k 2)   (k P)]Y y y y+ = + + +                    (10) 

vector of predicted responses for next P sampling 
instants. 

^ ^ ^^

T0 0 00 (k 1) [ (k 1)   (k 2)   (k P)]Y y y y+ = + + +                    (11) 

T(k 1) [ (k)   (k 1)   (k M 1)]U u u u+ = + + −                   (12) 
Control horizon M and prediction horizon P are design 
parameters. In general   ,   M P P N M≤ ≤ + . So that 

^^

0(k 1) (k) (k 1)Y YS U+ = + +                                               (13) 

Where,

1

2 1

1

1 2

1 1

0 0 0

M

M

P P P M

S
S S

S SS
S S

S S S

 
 
 
 
 
 
 
 

+ 
 
 
 − − + 

−
− − −

− − − − −
− − −=
− − −

− − − − −
− −

 

 
Equation (13) do not make use of latest measurement. 
Since cumulative effects of model inaccuracy and 
unmeasured disturbances may lead to inaccurate 
prediction. To improve prediction , latest measurement 
can be used with strategy termed as output feedback. 
Add a bias connection , b (k+j) so that , corrected 
prediction: 

~ ^

(k ) (k ) b(k )j j jy y+ = + + +                                          (14) 
^

(k ) : incorrect predictionjy +  

And,
^

b(k ) (k) (k)j y y+ = −                                               (15) 

                       = residual /estimated disturbance 
By substituting in (14): 

^ ^^

0(k 1) (k) (k 1) [ (k) (k)] IY YS U y y+ = + + + −                (16) 

where I is P dimensional unity column vector. and , thus 
a correction is made for all P Prediction 

~ ~ ~~

(k 1) (k 1)   (k 2)   (k )][Y py y y+ = + + +                    (17) 

3  NEURAL MODEL PREDICTIVE CONTROL FOR 
CONTINUOUS STIRRED TANK REACTOR (CSTR) 
SYSTEM 
In this section a procedure for constructing a neural 
network model predictive controller for the control 
problem is presented. Here we adopt a procedure in 
which the controller is trained directly to minimize the 
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cost for a training data set, without having to compute 
the optimal MPC control signals by off-line 
optimizations. 
The controller is represented as 

(k) ( (k); )u f I w=                                                             (18) 
Where ( (k); )f I w  is a function  approximator, 

(k)I denotes the information which is available to the 
controller at time instant k, and w denotes a vector of 
approximator parameters (neural network weights). If 
complete state information is assumed, i.e., 

(k) (k)MPCI I= , the controller (18) can be considered as a 
functional approximation of the optimal MPC strategy. 
The approach studied here is, however, not restricted to 
controllers with full state information, and typically the 
set (k)I  is taken to consist of a number of past inputs 

(k )u i−  and outputs (k )y i−  as well as information 

about the set point or reference trajectory (k )ry i− [15]. 
Set the random value for (k)I . 
Note: Besides allowing for controllers of reduced 
complexity the controller structure may be fixed as well 
by imposing a structure on the mapping (.)Nf  . For 
example, assuming that the information has the 
decomposition 

1 2(k) [ (k), (k), ......, (k)]rI I I I=                                                   (19) 
A decentralized controller : 

,(k) ( (k), ),   1, ......,i N i i iu f I w i r= = is obtained by 
requiring that the controller has the structure 

1 1 2 2

T T T T

,1 ,2 , r
( (k), ) [ ( (k), ), ( (k), ), .........., ( (k), )]

N r rN N N
f I w f I w f I w f I w=      (20) 

For determination of  controller parameters w in such a 
way that the control law (18) minimizes the cost it is 
required that the cost is minimized for a set of training 
data, 
 

( ) ( ) ( ) ( ) ( )(k) { (k), (k 1), (k 1), ...., (k )},

where 1, 2, ....,

m m m m m

r rV x u y y N

m M

= − + +

=
         

(21) 
Using the control strategy (18), the system evolution for 
the 
initial state x(m)(k) is given by 

( ) ( ) ( )( 1) ( ( ), ( ))m m mx i g x i u i+ =                                            (22) 
 

( ) ( ) ( (i), )m

Nu i f I w=                                                          (23) 
 

( ) (m)(i) ( (i)),      , 1, ....my h x i k k= = +                                 (24) 
 
Define the associated cost associated with the training 
data (21),     
 

1
( ) ( ) ( ) T ( ) ( )

( ) T ( ) ( )

( ) [( ( 1) ( 1)) ( ( 1) ( 1))

                    ( ) ( )] ( ( ))

k N
m m m m m

N r r
i k

m m m

N

J w y i y i Q y i y i

u i R u i q x k N

+ −

=

= + − + + − +

+ + +

∑

 

                                                                                              (25) 
The training of the function approximator (18) now 
consists of solving the nonlinear least-squares 
optimization problem 

( )

1

( )min
M

m

N
mw

J w
=

∑  

 
subject to the constraints 
 

( )( ( 1)) 0m

xf x i + ≤                                                                (26) 
 

( )( ( )) 0m

uf u i ≤                                                                     (27) 
 

( )( ( )) 0,       , 1, ...., 1mf u i i k k k N≤ = + + −

                  (28) 

4  PERFORMANCE OF THE CONTROL SYSTEM 
The dynamic model of the Continuous Stirred Tank 

Reactor system is given by 
F1

C1

F2

C2

h

F

C  
Fig. 3. Representation of Continuous Stirred Tank Reactor 

 

1 2

( )
( ) ( ) 0.2 ( )

dh t
F t F t h t

dt
= + −                                           (29) 

 

1 2 1

1 2 2

2

( ) ( ) ( )( )
( ( )) ( ( ))

( ) ( ) (1 ( ))

t t k C tdC t
C C t C C t

dt h t h t k C t

F F
= − + − −

+
     

                                                                                                (30) 
Where ( )h t is the liquid level, ( )C t  is the product 

concentration at the output of the process, 
1

( )tF  is the flow  

rate of the concentrated feed 1C , and 
2
( )tF  is the flow rate 

of the diluted feed 2C . The input concentrations are set to 

1
24.9C =  and 2 0.1C = . The constants associated with 

the rate of consumption are 1 1k = and 2 1k = . 
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The objective of the controller is to maintain the product 
concentration by adjusting the flow 1 ( )tF . To simplify 

the demonstration, set 2 ( ) 0.1tF = . The level of the tank 
h(t) is not controlled for this experiment. 
 

4.1  Simulation Results 

The values of the all parameters are mentioned in the 
above section and all the simulation results are based on 
the prescribed values of the parameter. 

0 200 400
0

1

2

3

4
Input

0 200 400
20

20.5

21

21.5

Plant Output

0 200 400
-0.015

-0.01

-0.005

0

0.005

0.01
Error

time (s)
0 200 400

20

20.5

21

21.5

NN Output

time (s)
 

 
Fig. 4. Validation data for Neural Network Predictive Control 
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Fig. 5. Training data for Neural Network Predictive Control 
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Fig. 8. Training Performance 
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Fig. 9. Output of the system 
 
 

 

5  CONCLUSION 
The most significant aspect of this paper is the reduction 
in computational time. The model predictive control 
method involves highly mathematical computations. 
What is more, predictors based on artificial neural 
networks significantly increase computational demands 
of the MPC controllers. Nevertheless, the neural network 
based Model Prectiction Control provides very 
interesting way how, to reduce computational costs, 
because the training times of  networks are incredibly 
short. This kind of artificial neural network could be 
promising for on-line adaption of the predictor in case of 
dynamic systems. 
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